Work Package 8
Outreach and Training

Deliverable 8.7
Year 3 Project Newsletter

Lead beneficiary: NERC

Lead author: Luisa Cristini (Luisa.cristini@noc.ac.uk)

Contributors: Kathryn Keeble (BLIT), Simon Keeble (BLIT), Richard Lampitt (NERC), Ingo Schewe (AWI), Pericles Silva (INDP), Melanie Bergmann (AWI), Herman Hummel (NIOZ), Ingunn Skjelvan (UniResearch, UiB), Mathilde Cannat (CNRS), Pierre Marie Sarradin (Ifremer), Jerome Blandin (Ifremer), Valerie Ballu (CNRS), Thibaut Barreyre (CNRS), Valérie Chavagnac (CNRS), Ana Colaço (IMAR), Wayne Crawford (CNRS), Romuald Daniel (CNRS), Javier Escartín (CNRS), Julien Legrand (Ifremer), Marjolaine Matabos (Ifremer), Céline Rommevaux (CNRS), Guillaume Roullet (IUEM), Gilles Reverdin (CNRS), Jozée Sarrazin (Ifremer), Kate Moran (ONC).

Work Package leader: Kathryn Keeble (BLIT, kathryn@bluelobster.co.uk)

Due date: Project Month 37 (09-2016)

Dissemination level: PU

The work described in this report has received funding from the European Union Seventh framework Programme (FP7/2007-2013).
Preparation

Preparation of the second project newsletter started around May 2016 through coordination between the task leader and FixO3 project manager Luisa Cristini and WP8-leader Kathryn Keeble, who acted as newsletter editors. It was agreed that the newsletter would focus on the project Service Activities (SA) to highlight data services and products produced by FixO3 observatories for the wider scientific community.

An outline of the newsletter’s content was then developed along with a feasible time-scale for the development of the articles’ drafts and the graphic layout. Potential lead authors were identified among the project partners and invited to contribute.

A first draft of the content was ready for review by mid-July 2016 and available to the editors for feedback. The content was then revised where necessary to provide the final content by the end of July 2016. The graphic designers prepared the final layout based on the first newsletter with feedback from the editors.

The newsletter was sent to print in early September 2016.

Content

The Newsletter features twelve contents:

1. An introductory editorial “The purposes of ocean observations” by the Project Coordinator Richard Lampitt (NOC)
2. A summary table of key events and achievements during the third year of the project “Looking back” by Luisa Cristini
3. An information box “What is FixO3” by Luisa Cristini (NOC)
4. An overview of the Service Activities provided by observatories in the FixO3 project “Service Activities at a glance” by Ingo Schewe (AWI).
5. An overview of products provided by the observatory CVOO “Cape Verde Ocean Observatory: Data products from a multi-platform ocean time series station” by Pericles Silva (INDP).
6. An overview of SA from the observatory FRAM “Higher life at the Arctic deep seafloor: a new data-product to present results of long-term image analyses from a towed camera system” by Melanie Bergmann and Ingo Schewe (AWI)
7. A summary table of key events and activities planned for the fourth year of the project “Looking forward” by Luisa Cristini

8. A short report of the workshop for young scientists and data products users organized by NIOZ “Acquisition, validation, quality control and access to (biodiversity) data: a FixO3 training course for less experienced users of data products” by Herman Hummel (NIOZ).

9. An overview of SA provided by the observatory Station M “Carbon cycle and ocean acidification in the northern North Atlantic” by Ingunn Skjelvan (Uni Research and University of Bergen)

10. An overview of SA provided by observatory MOMAR “EMSO-Azores: Monitoring seafloor and water column processes at the Mid-Atlantic Ridge” by Mathilde Cannat (CNRS) and others.

11. A short interview to Kate Moran, President and CEO of Ocean Networks Canada and member of FixO3 Advisory Board “Opinion”

12. New and updated resources on the project

Distribution

The newsletter was distributed electronically to registered users of the project website, to the project Consortium and the project Advisory Board, and to some networks related to the project (e.g., AtlantOS, EMSO, JERICO-NEXT, EuroGOOS, EMODnet, JPI Oceans). 100 copies were also printed and distributed to participants of the project General Assembly 2016 (18-21 September 2016, Gran Canaria) and in other events. Copies of the newsletter are also on display and available to the public in the FixO3 Project Management Office (PMO) and in the secretariat of the Ocean Biogeochemistry Group at the National Oceanography Centre, which hosts the PMO.

Appendix

The FixO3 Year3 Project Newsletter
The Fixed point Open Ocean Observatory network (FixO3) seeks to integrate European open ocean fixed point observatories and to improve access to these key installations for the broader community.

Project Newsletter
SERVICE ACTIVITIES SPECIAL
Volume 3 - Issue 1

29 partners, 11 European countries, 23 fixed point observatories, 12 work packages, 4 years, 7 million Euros.

Find out more Web: www.fixO3.eu Twitter: @fixO3Project

This work has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° [312463], [FixO3]
Editorial: The purposes of ocean observation

Richard Lampitt
National Oceanography Centre Southampton

There are two broad reasons why we need to make sustained observations of the planet’s oceans. The first is to generate data of sufficient temporal and spatial resolution on variables of critical relevance to the Earth system so that we can determine how the oceans are changing over time and space. The second reason is to obtain simultaneous data on a range of relevant variables so that we gain a better understanding of how these variables relate to each other and hence obtain a deeper picture of the way the system functions. The cost of making these observations is now in comparison to that of comparable observing endeavours such as astronomy, but the benefits, although difficult to quantify objectively, are substantial (see for example Cristini et al. 2016 in Marine Policy). These benefits may depend on short term observations when applied for instance to recreational activities, maritime transportation efficiency or to target commercial fishing effort. Alternatively they may depend on being sustained over many years to determine for instance the consequence of anthropogenic perturbation on the climate of the planet. One of the massive benefits of the observing systems we now have in place is that the same suite of deployments can be used for a wide range of purposes and on different time scales and as they develop in terms of reliability diversity and accuracy over the coming decades, we should anticipate major advances in our understanding of system function at a time when the oceans will change in a fundamental manner.

There are several platforms for making ocean observations; transect ships, research vessels, gliders, floats, satellites, autonomous surface vehicles, benthic crawlers and, as is the focus of FixO3, fixed point or eulerian observatories. All platforms have strengths and weaknesses and the crucial issue with all of them is that they must generate data which is intercomparable and can be assimilated by computational models such that an understanding of the entire system and its variability can be generated.

There is a wide range of sensors and samplers which are deployed on these platforms and all require expert technical support if they are to function effectively for the period of deployment, often for over a year. Behind this simple word “intercomparable” lies a plethora of methodological detail which cannot be skipped or done in part. For a start the sensors deployed need to have sufficient accuracy and precision, the samplers must retain the collected material without contamination of degradation. Calibration of sensors is essential prior to deployment and after recovery, the data must then be managed and curated in such a way that all relevant metadata is permanently stuck to the data. Data must then of course be readily available so that access is simple and clear and with the appropriate attribution.

It is with this mind-set that data products (or Service Activities, as we call them) were developed within the FixO3 project. The aim of this action is to make data, maps, and trends from FixO3 observatories readily accessible in a centralised way to be used for a wide range of research such as ocean physics and climate change, carbon cycle and acidification, biodiversity and ecosystem assessment, geophysics and geodynamics. This year’s issue of FixO3 Newsletter is focused on data products, where they come from and why they are important. We give an overview of the data products (Service Activities) provided by the FixO3 project, their importance and their uses (“Service activities at a glance: Services for Science and Society” by Ingo Schewe) we then give examples of the service activities from four observatories within the FixO3 Network: CVOO, FRAM, Station M and MOMAR. We also present our efforts in training young scientists and data users on how to access and validate data to deliver products for a wide range of uses (Acquisition, validation, quality control and access to data – a FixO3 training course for less experienced users of data products) by Herman Hummel.

Thank you for your interest
Looking Back

Main activities and events of the third project’s year: September 2015 – August 2016

<table>
<thead>
<tr>
<th>Month</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2015</td>
<td>Project’s technical review started</td>
<td>An external reviewer appointed by the European Commission has reviewed the project’s first two years to assess the work that has been done and the use of resources.</td>
</tr>
<tr>
<td></td>
<td>Workshop: practical introduction to marine monitoring hardware and procedures (15-17, Trieste)</td>
<td>A fully-funded workshop for early career scientists with an interest in a career in ocean monitoring, observation and forecasting was organized by FixO³ partner OGS. Read more about this in the project’s deliverable 8.10 and on the project website http://www.fixo3.eu/</td>
</tr>
<tr>
<td></td>
<td>Newsletter 2</td>
<td>The year 2 project newsletter is focussed on the current challenges of data management and sharing in Europe and on FixO³ contribution. The newsletter (project deliverable 8.6) can be accessed from the project website http://www.fixo3.eu/</td>
</tr>
<tr>
<td>October 2015</td>
<td>FixO³ General Assembly 2015 and Technical Review (12-14, Brussels)</td>
<td>The annual project’s General Assembly (GA2015) took place at the Thon Hotel Brussels and included the Technical Review meeting where an external reviewer and the project officer from the European Commission provided feedback on the project. Read more about the meeting and access the summary and all presentations from the project website http://www.fixo3.eu/</td>
</tr>
<tr>
<td></td>
<td>Data management workshop (15, Brussels)</td>
<td>A workshop for data managers took place right after the GA2015</td>
</tr>
<tr>
<td></td>
<td>EMODnet conference & jamboree (20-22, Ostend)</td>
<td>The open conference and jamboree discussed standards for harmonization of marine data, products and metadata throughout Europe to make these fragmented resources more available to public and private users.</td>
</tr>
<tr>
<td></td>
<td>D2.4</td>
<td>INGV coordinated a summary of new sensors development and their suitability for different applications</td>
</tr>
<tr>
<td></td>
<td>D5.5</td>
<td>SLR describe five innovative products outcoming from the FixO³ community</td>
</tr>
<tr>
<td></td>
<td>MS16</td>
<td>Innovative products developed</td>
</tr>
<tr>
<td>November 2015</td>
<td>D7.10</td>
<td>TNA leader PLOCAN provided a summary of the evaluation process and results of the second call for transnational access to FixO³ observatories.</td>
</tr>
<tr>
<td>January 2016</td>
<td>11th SC meeting</td>
<td>The project’s Steering Committee met via videoconference to discuss the project’s status and work plan.</td>
</tr>
<tr>
<td>February 2016</td>
<td>MS12</td>
<td>Guidelines and recommendations from TNA users have been collected and published on the project website http://www.fixo3.eu/</td>
</tr>
<tr>
<td></td>
<td>Ocean Sciences Meeting (21-26, New Orleans)</td>
<td>The world’s largest conference on ocean sciences provided opportunity to showcase the project achievements and discuss with the international community what next steps are needed towards a sustained network of fixed ocean observations. Read more about FixO³ contribution to the conference on the project website http://www.fixo3.eu/</td>
</tr>
<tr>
<td>March 2016</td>
<td>Oceanology International (15-17, London)</td>
<td>The world’s leading forum where industry, academia and government share knowledge and connect with the marine science and ocean technology communities was the stage from where FixO³ partners discussed the role of industry and the benefits of an integrated network of ocean observatories. Read more about FixO³ contribution to the event on the project website http://www.fixo3.eu/</td>
</tr>
<tr>
<td>April 2016</td>
<td>EGU General Assembly (17-22, Vienna)</td>
<td>FixO³ convened a session on advances at fixed ocean observatories at the largest European conference on geosciences. The session was well attended and provided the opportunity to discuss latest scientific and technological results. Read more about the EGU general Assembly on the project website http://www.fixo3.eu/</td>
</tr>
<tr>
<td></td>
<td>12th SC meeting</td>
<td>The project’s Steering Committee met via videoconference to discuss the project’s status and work plan.</td>
</tr>
<tr>
<td>May 2016</td>
<td>7th AB meeting</td>
<td>The project’s Advisory Board met via videoconference to discuss the project’s status and recommendations to increase impact of outcomes.</td>
</tr>
<tr>
<td></td>
<td>10th GEO EU Projects Workshop (31 May – 2 June, Berlin)</td>
<td>Representatives from science, business and public administration met in Berlin to discuss how European Earth observation initiatives can contribute to the Global Earth Observations System of Systems (GEOSS). FixO³ was represented at the workshop by the Project Coordinator Richard Lampitt.</td>
</tr>
<tr>
<td>Month</td>
<td>Event</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>June 2016</td>
<td>D2.5</td>
<td>INGV prepared the preliminary version of a useful handbook for project partners with information about sensors and devices tested.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handbook of best practices published! The handbook establishes optimal ways for users to implement fixed stations in open ocean region. It describes all procedures used within the network, such as maintenance, service, sensors calibration, pre and post deployment operations as well as data transfer and data qualification necessary to operate an open sea observatory. The handbook can be freely accessed and downloaded from the project website at http://www.fixo3.eu/</td>
</tr>
<tr>
<td>July 2016</td>
<td>D8.4</td>
<td>IMAR delivers three high impact visual outputs related to FixO³ and ocean observatories: a poster and an accompanying fact sheet on the achievements at half way, a videography on ocean observatories and their importance available on YouTube and a Wikipedia entry.</td>
</tr>
<tr>
<td></td>
<td>D8.12</td>
<td>NIOZ organised a 2-day course for less experienced users of data products on acquisition, validation, quality control and access to biodiversity data. Read more about the course on the project website http://www.fixo3.eu/</td>
</tr>
<tr>
<td></td>
<td>MS14</td>
<td>Information on the second round of TNA projects published online!</td>
</tr>
<tr>
<td>August 2016</td>
<td>End of second project reporting period</td>
<td>The second project period (started on the 1st March 2015) ends this month and reports on activities and finance need to be submitted to the European Commission by October 2016.</td>
</tr>
<tr>
<td></td>
<td>D3.3</td>
<td>Ifremer has developed a FixO³ label for ocean observations</td>
</tr>
<tr>
<td></td>
<td>D6.2</td>
<td>INGV ensured inclusion of FixO³ time series in ESFRI projects</td>
</tr>
<tr>
<td></td>
<td>D6.4</td>
<td>HCMR ensured recognition by the European Marine Board of the role of FixO³ time series in European marine and maritime policy</td>
</tr>
<tr>
<td></td>
<td>D11.2</td>
<td>UiB evaluated capabilities of the actual observational network</td>
</tr>
<tr>
<td></td>
<td>D11.3</td>
<td>ULPGC carried out a cross-over analysis of parameters between platforms</td>
</tr>
<tr>
<td></td>
<td>MS15</td>
<td>Harmonization of standards and data formats for marine observatories reached</td>
</tr>
<tr>
<td></td>
<td>MS22</td>
<td>Harmonization of standards and data formats for marine observatories reached</td>
</tr>
</tbody>
</table>

What is FixO³

The Fixed-point Open Ocean Observatories Network (FixO³) is a collaborative project between 29 partners in 11 European countries drawn from academia, research organizations and small and medium enterprises (SMEs) coordinated by the National Oceanography Centre in Southampton, UK.

The project started in September 2013 for four years with a total funding of 7 million Euros from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 312463.

The project aims to:

- integrate the 23 open ocean observatories operated by European organizations spread in the Atlantic ocean from the Arctic to the Antarctic and the Mediterranean Sea
- improve access to these key installations by the broader community
- provide multidisciplinary observations from the air-sea interface to the deep seafloor
One important goal of FixO3 is to provide easy access to fully-processed multidisciplinary data services and products. Within the project this aim is realized by so-called Service Activities (SA) providing scientific knowledge derived from most of the observatories which comprise the FixO3 network. This includes the entire oceanic environment, from seafloor to the air-sea interface (Fig.1). The SAs comprise high quality data products from 12 fixed-point multidisciplinary open ocean observatories included in the FixO3 network. These sustained open ocean observatories cover a broad geographical range from the Polar Regions to the Atlantic and Mediterranean. They demonstrate direct applications, such as maps of ecosystem indicators over European seas, or model validations with respect to in-situ data. In addition, SAs provide highly derived information products such as regional trends in ecosystem function and diversity.

Some of the delayed mode data and especially the “interventive data” address the temporal variability of ecosystems and their biodiversity. In some cases (e.g. physical datasets) these are uploaded daily for operational users (e.g. through COPERNICUS and the Global Telecommunication System). FixO3 SAs take open ocean data services beyond the current state-of-the-art, offering products that cover a broad range of science themes with high societal relevance and impact. These include carbon and ocean acidification, climate and ocean physics, biodiversity and ecosystem assessment and geo-hazard monitoring. Many of the products offered by these service activities are also of value for maritime policy. The trans-observatory integrated service builds on the EarthVO data visualisation tool operated by FixO3 partner Blue Lobster IT, which offers various tools to easily display different types of datasets in a standardized format.

The integrated data services offering regional scale visualisation of datasets and products from open ocean observatories have been selected according to their relevance to the Global Earth Observation System of Systems (GEOSS, Fig.2) as well as their compliance with SeaDataNet standards (SeaDataNet is the Pan-European Infrastructure for Ocean & Marine Data Management) and COPERNICUS, the European system for monitoring the Earth. FixO3 SAs build on the current fixed-point open ocean data services and the progress made in previous European projects such as EuroSITES, HYPOX, ESONET and CARBOOCEAN which integrated and enhanced European observatory data streams. As a result of these endeavours, many of the FixO3 observatory sites are utilising standardised data management and quality control procedures and are transmitting data in near real-time.

The FixO3 SA web pages give end users the opportunity to directly access data-sets, derived data and data products from a central access point. They can be selected either by selecting the overall scientific themes defined by GEOSS or via choosing one of the particular FixO3 observatories directly.

http://www.fixo3.eu/service-activities/
Long-term observation is fundamental to understanding global climate change. Atmospheric change impacts marine ecosystems, and the atmosphere is influenced by ocean physical and biogeochemical processes. Many impacts and feedbacks within the climate system are centered in the Tropics and although these areas play a key role in air-sea interactions, observational data remains scarce.

The Cape Verde Ocean Observatory (CVOO) is located at 17.6°N 24.3°W and consists of operational atmosphere and ocean monitoring sites for various climate-relevant environmental parameters in the tropical Eastern North Atlantic Ocean. The observatory has three main components: a moored observatory, a research vessel and a marine laboratory.

The observatory has been collecting data since July 2006 from 3600 m of depth up to surface. It comprises sensors measuring salinity, temperature, pressure, oxygen, pCO2, ADCP, and currents. It includes a sediment trap, and a telemetry buoy for collection of near-surface data of salinity, temperature and oxygen. Since November 2012, the observatory transmits also temperature, salinity and oxygen measurements from the upper 50 meters. Data products from CVOO can be accessed from the FixO3 webpage at: http://www.fixo3.eu/service-activities/cvoo-service-activities/ where a direct link to the observatory data portal is also available.

The research vessel RV Islândia is a small fishing vessel for pelagic and bottom trawls built in 1993 in Iceland and later donated to the Cape Verdean Government. It is now under INDP’s operational responsibility. The ship has been converted from a fishing vessel to a multidisciplinary research vessel. It is equipped with a CTD rosette with twelve 5L niskin bottles. CTD sensors collect data for salinity, temperature, chlorophyll, turbidity, dissolved oxygen and light in the water. Water samples provide other parameters such as dissolved inorganic carbon, total organic carbon, total alkalinity, particulate organic carbon (POC), particulate organic nitrogen (PON) and Nutrients. The ship is has stopped operations since July 2014 due to lack of funds.

The marine laboratory is located at INDP headquarters in Mindelo. It is operational since July 2007, and is composed of a wet and a dry lab. The laboratory is equipped with Milli-Q water, a laminar flow hood, spectrophotometer and fluorometer. It is possible to carry out analyses of dissolved oxygen, nutrients (autoanalyzer), and chlorophyll.

The Ocean Science Information System (OSIS) provides meta data for all expeditions such as date, location, collected parameters and a lot more. Registered users may also access the collected data (such as CTD data) as soon as it published. The CVOO recently developed a Niskin data base implemented into OSIS and providing direct access to the calibrated bottle data. With the integrated search function the desired data can be directly accessed (e.g. "all Oxygen measurements from 2010-today north of 10°N").

The next development of the observatory is the Ocean Science Center of Mindelo (OSCM). The OSCM is a multi-purpose facility to support the international science community in conducting marine and atmospheric research in and around Cape Verde and in hosting workshops, conferences, summer school and other meetings. Support includes, provision of laboratory facilities, offices, meeting rooms, workshop and storage spaces, access to the RV Islândia, transportation, as well as logistical services associated with housing, travel, shipment etc. issues.
Higher life at the Arctic deep seafloor: a new data-product to present results of long-term image analyses from a towed camera system

Melanie Bergmann & Ingo Schewe
Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research (INDP)

Benthic biota, the organisms living at the bottom of the sea, play an important role in the global carbon cycle through the continuous redistribution of organic matter, oxygen and other nutrients in superficial sediments by breaking down organic matter into its simplest inorganic forms (a process called remineralisation), reworking soils and sediments (bioturbation) and burial of sunken matter. The organisms that inhabit the sediment–water interface at the bottom of the sea and have dimensions larger than 1 cm are called epibenthic megafauna. They contribute considerably to respiration at the sea floor and have a strong effect on the physical and biogeochemical environment at micro scales. Erect biota, the organisms growing vertically such as sponges or corals, enhance three-dimensional habitat complexity and provide shelter from predation. Furthermore, megafaunal predators control the population of their prey and therefore shape benthic food webs and community structure. An understanding of megafaunal dynamics is therefore vital to understand of the fate of carbon at the deep seafloor, the Earth’s greatest carbon reservoir.

Recent technological progress has driven the development of camera-based monitoring methods from various platforms (towed systems, remotely operated vehicles, autonomous underwater vehicles, and stationary platforms such as benthic landers) which have increasingly been used to characterise epibenthic communities and habitats on the seafloor. Such methods are less invasive than trawls and enable large-scale distribution assessments allowing the description of larger habitats. Recently, such tools have also been used to quantify pollution on the deep seafloor.

Inevitably, such methods generate ‘big data’, often inaccessible to researchers from other institutes or to the general public and can therefore not be used to their full potential. As part of FixO³ Service Activity 1.2 ‘Fram Strait, Arctic: time series on megafauna density and diversity’ we developed a tool to access photographs from the HAUSGARTEN observatory along with geographic information and scientific data products. The seafloor of selected stations of the HAUSGARTEN observatory is surveyed regularly by the towed Ocean Floor Observation System (OFOS; Fig. 1). The vertically facing camera system is used to assess large-scale distribution patterns of megafaunal organisms and other objects on the deep seafloor (e.g. dropstones, garbage). The system is lowered to approximately 1.5 m above the sea floor using a fibre optical cable for data, video and energy transfer, and then towed along a set transect at a speed of 0.5 knots.

Images and data of these observations are stored in the scientific database PANGAEA. However, relevant information might be difficult to retrieve in such data repository, especially by the general public. A new GIS-based web-viewer (Fig. 2) was developed to facilitate access to the collected images and data. The tool also shows the locations on a map where the images were taken and provides data for organism abundances, which are based on scientific image analysis. This product gives the users the extremely rare opportunity to get an idea of how benthic communities inhabiting the deep Arctic seafloor look like and evolved during the years of investigation. The data can also be used to calculate benthic biomass (the total quantity of organic matter on an area of the sea floor) as a baseline to assess the impact of global warming and anthropogenic threats to the Arctic ecosystem such as fishing, litter pollution, cruise tourism and shipping.

Figure 1: The towed ocean floor observation system (OFOS) on the sea floor

Figure 2: Screenshot of the AWI OFOS-Viewer; seafloor picture with associated data from image-analyses
Looking Forward

Main activities, events and deadlines planned for the last project’s year: September 2016 – August 2017

<table>
<thead>
<tr>
<th>Month</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2016</td>
<td>Challenger Conference 2016 (5-8, Liverpool, UK)</td>
<td>The 2016 Challenger Conference promises to provide a fantastic showcase of marine science and technology, covering all areas of ocean research. FixO³ poster will be presented by the project coordination team.</td>
</tr>
<tr>
<td></td>
<td>41st CIESM Congress (12-16, Kiel, Germany)</td>
<td>The 41st meeting of the Mediterranean Science Commission integrates a broad spectrum of marine disciplines, encompassing geo-physical, chemical and biological processes, along with high-resolution mapping of the sea-bottom at the scale of the whole Basin. FixO³ will be presented by Steering Committee member Vanessa Cardin (OGS).</td>
</tr>
<tr>
<td></td>
<td>FixO³ General Assembly 2016 (18-21 Gran Canaria, Spain)</td>
<td>The FixO³ General Assembly 2016 will be hosted by FixO³ partner PLOCAN in Gran Canaria, Spain, and take place from the 18th to 21st September 2016. The aim of the General Assembly is to update on project activities and discuss any issues that have arisen during the previous year and to plan the work for the last project year. The meeting will include specific sessions on the Work Packages, Steering Committee and Advisory Board meetings, as well as offer networking opportunities (i.e., a snorkelling/scuba diving tour and a networking dinner).</td>
</tr>
<tr>
<td></td>
<td>ICOS Science Conference 2016 (27-29, Helsinki, Finland)</td>
<td>This year’s conference will address some of the key topics in the greenhouse gases and biogeochemical cycles research and is open to all scientists interested in research on greenhouse gases, biogeochemical cycles and climate change.</td>
</tr>
<tr>
<td></td>
<td>Newsletter 3</td>
<td>The year 3 project newsletter focuses on data products and service activities from FixO³ observatories. The newsletter (project deliverable 8.7) can be accessed from the project website fixo3.eu.</td>
</tr>
<tr>
<td>October 2016</td>
<td>Second project report due</td>
<td>Reports (activities and finance) on the project period 1 March 2015 to 31 August 2016 are due from each partner.</td>
</tr>
<tr>
<td></td>
<td>A Connected Ocean International Conference (11-13, Brest, France)</td>
<td>The challenge for future ocean knowledge and data integration sets the stage for this conference which will include sessions on new autonomous approaches to the measurement of biogeochemical rates; interoperability standards for the marine environment; multimodal synergies in ocean studies; big data infrastructure and analytics in ocean science; and integrated observations of upwelling systems.</td>
</tr>
<tr>
<td></td>
<td>7th International Workshop on Marine Technology (27-28, Barcelona, Spain)</td>
<td>The main objective of the MARTECH Workshop is to show latest investigations and exchange of information and points of view on current research in MARine TECHnology.</td>
</tr>
<tr>
<td>November 2016</td>
<td>Time series analysis in environmental science and applications to climate change (8-11, Tromsø, Norway)</td>
<td>Times-series analysis is the future for environmental sciences to understand natural processes and their dynamics. To support these technical developments, the “Time series analysis in environmental science and applications to climate change” conference aims to promote transfer of knowledge between researchers from various environmental fields. This will be achieved by both training courses (8-9/11) and conference (10-11/11) presentations based on application examples and actual case studies from field experiments.</td>
</tr>
<tr>
<td>December 2016</td>
<td>M17</td>
<td>Training Achieved! All course materials from three FixO³ training workshops available on the project website (Lead: BLIT)</td>
</tr>
<tr>
<td></td>
<td>D2.9</td>
<td>Final update of the Open Ocean Observatories Yellow Pages Website (Lead: IMAR)</td>
</tr>
<tr>
<td></td>
<td>D2.10</td>
<td>Technical Guidelines of standards of acceptability for common sensor interoperability protocols (Lead: PLOCAN)</td>
</tr>
<tr>
<td></td>
<td>D4.2</td>
<td>FixO³ Standardisation workshops and status report (Lead: INGV)</td>
</tr>
<tr>
<td></td>
<td>D4.8</td>
<td>Final report on Service Activities (Lead: AWI)</td>
</tr>
<tr>
<td></td>
<td>D12.7</td>
<td>Prototype of non-cabled platform tested during a cruise. Proposed methodology of fast deployment (Lead: Ifremer)</td>
</tr>
<tr>
<td></td>
<td>Christmas closure (17 December to 2 January)</td>
<td>The project management office will close over Christmas 2016 and New Year’s Day 2017</td>
</tr>
<tr>
<td>January 2017</td>
<td>14th SC meeting</td>
<td>The project Steering Committee will meet via videoconference to discuss the project status and the work planned for the next months</td>
</tr>
<tr>
<td>February 2017</td>
<td>D6.5</td>
<td>FixO³ time series referred in regional and global conventions and assessments (Lead: UiB)</td>
</tr>
<tr>
<td></td>
<td>D12.3</td>
<td>Long term deployment (Lead: UGOT)</td>
</tr>
<tr>
<td>March 2017</td>
<td>9th AB meeting</td>
<td>The project’s Advisory Board will meet via videoconference to discuss the project’s status and recommendations to increase impact of outcomes.</td>
</tr>
<tr>
<td></td>
<td>D4.3</td>
<td>Agreement to establish FixO³ data Dissemination to marine infrastructures (Lead: NERC)</td>
</tr>
<tr>
<td>Month</td>
<td>Event</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>April 2017</td>
<td>EGU General Assembly (17–22, Vienna)</td>
<td>FixO³ will convene a session on advances at fixed ocean observatories at the European largest conference on geosciences. The session will provide the opportunity to discuss latest scientific and technological results.</td>
</tr>
<tr>
<td></td>
<td>D2.6</td>
<td>Updated version of the “Handbook” on relevant info about sensors and devices tested (Lead: INGV)</td>
</tr>
<tr>
<td></td>
<td>D5.7</td>
<td>Description of innovative products and services (Lead: MI)</td>
</tr>
<tr>
<td>May 2017</td>
<td>15th SC meeting</td>
<td>The project Steering Committee will meet via videoconference to discuss the project status and the work planned for the next months</td>
</tr>
<tr>
<td>June 2017</td>
<td>D12.6</td>
<td>Conclusions on the operational prototype, the long term experiments and recommendations on the large network of passive acoustic observatories (Lead: UPC)</td>
</tr>
<tr>
<td></td>
<td>M18</td>
<td>Presentation of FixO³ label, common protocols and standards and best practices for ocean observatory</td>
</tr>
<tr>
<td>July 2017</td>
<td>D1.10</td>
<td>Report on gender balance across the Consortium (Lead: NERC)</td>
</tr>
<tr>
<td></td>
<td>D1.11</td>
<td>Report on the distribution of financial support by beneficiary (Lead: NERC)</td>
</tr>
<tr>
<td></td>
<td>D7.11</td>
<td>TNA access, recommendations and guidelines (Lead: PLOCAN)</td>
</tr>
<tr>
<td></td>
<td>D8.8</td>
<td>Final project newsletter (Lead: NERC)</td>
</tr>
<tr>
<td></td>
<td>D11.4</td>
<td>Publication of optimum observational network (Lead: UNEXE)</td>
</tr>
<tr>
<td></td>
<td>M23</td>
<td>Evaluation of the observational network complete</td>
</tr>
<tr>
<td></td>
<td>End of 3rd project period</td>
<td>The third project period (started on the 1st September 2016) ends this month and reports on activities and finance need to be submitted to the European Commission by October 2017.</td>
</tr>
<tr>
<td>September 2017</td>
<td>Final Consortium meeting (4–8, Southampton) incl. last AB and SC meetings</td>
<td>The third and final Consortium Meeting will be hosted by the Project Coordinator and include a Science & Technology Day showcasing the projects implemented through the TNA action</td>
</tr>
<tr>
<td>October 2017</td>
<td>Third project report due</td>
<td>Reports (activities and finance) on the project period 1 September 2016 to 31 August 2017 are due from each partner.</td>
</tr>
</tbody>
</table>
Acquisition, validation, quality control and access to (biodiversity) data: a FixO3 training course for less experienced users of data products.

Herman Hummel
NIOZ Royal Netherlands Institute for Sea Research

A fully-funded training course on data products was held on 14 and 15 June 2016 in Vlissingen, the Netherlands organized by Herman Hummel and Joke van Houte of the Netherlands Institute for Sea Research (NIOZ), with help from Sarah Faulwetter (HCMR), Nicolas Bailly (HCMR, Fishbase), Matt Frost (MBA), Pieter Provoost (OBIS, IODE), and Sander Wijnhoven (NIOZ, EcoAuthor).

The course was designed to introduce less experienced users to methods and techniques for processing biodiversity data, integrating physico-chemical and biodiversity data, and delivering data products that may be required to meet policy needs such as GES descriptors.

The course instructors were all experts in the field of data management and marine observation of biodiversity and they trained nineteen international participants through a series of lectures on theory, practical examples, and hands-on sessions. The participants had been selected out of seventy applicants from twenty-nine countries all over the world.

The theoretical and practical classes included introductions to scientific concepts and theoretical models; examples on the practical use of biodiversity and environmental data in the frame of European research projects and global programmes; an overview of data repositories and current statistical packages; hands-on sessions on data treatment and analyses, using the (previously explained) repositories and packages; and finally an overview of the use of biodiversity data in policy and legislation.

The participants valued the training course unanimously as well organized and very useful, and rated it with a very good to excellent score. The quality of the lectures and the venue were judged excellent. The friendly atmosphere during the course encouraged interactions among the participants and with the trainers. Several participants stated they wished the course lasted longer.

The participants will use the acquired knowledge to improve their work and research as they now have the tools to handle complex oceanographic datasets on biodiversity and environmental factors, and are now better able to test hypotheses in their projects and to solve practical problems with mathematical and statistical programs.

Altogether, the organizers, lecturers as well as the participants to the FixO3 training workshop in Vlissingen enjoyed an eminent, pleasant and instructive event.
Station M is one of the FixO\(^3\) observatories providing data related to the marine carbon cycle and ocean acidification. The site is located in the northern North Atlantic at 66°N 2°E, approximately 200 nautical miles from the Norwegian coast, and its history dates back to the late 1940’s when there was a need for improved weather forecasts due to the increased air traffic between Europe and North America. More than a dozen weather ships were established in the north Atlantic and one of these was situated at Station M, from where oceanographic and meteorological data was monitored since 1948. Hydrographic data from the deep water at Station M is among the longest time series in the world, and based on these data it was discovered that in the mid 80ties the Norwegian Sea deep water started warming from a relative stable low temperature.

In 2011 autonomous instrumentation replaced the weather ship at Station M and since then partial pressure of carbon dioxide (\(p\text{CO}_2\)) and pH have been measured continuously in the surface water as well as in the mixed layer. A variety of data, such as air temperature, dissolved oxygen, and \(p\text{CO}_2\) in sea surface and atmosphere, is publicly available in real time at http://talos.nodc.no:8080/stasjonm/index.html?lang=en.

This data is used to study ocean acidification and its temporal variability. The term ocean acidification describes the ongoing decrease in pH of seawater and depletion of carbonate concentration of the Earth’s oceans, caused by uptake of \(\text{CO}_2\) from the atmosphere. The acidification affects the ecosystems in the oceans, but to what degree and in which form is not yet fully understood. Thus it is important to monitor trends both on annual and seasonal scale to keep track of the acidification process. Ocean acidification is detected by monitoring the inorganic carbon system in sea water. \(p\text{CO}_2\) and pH measurements from Station M are used to calculate the saturation state for carbonate in its two crystal forms calcite and aragonite (\(\Omega\text{Ca}\) and \(\Omega\text{Ar}\)). These two parameters indicate how “corrosive” the sea water is for carbonate, either in form of planktonic skeleton or solid carbonate deposits on the sea floor. Saturation state of carbonate, \(\Omega\), larger than 1, indicates that the water is over saturated with respect to carbonate, while \(\Omega\) less than 1 indicates under saturation of carbonate. When \(\Omega\) is well above 1 there is sufficient amount of carbonate for the organisms to form shells and skeletons, but when \(\Omega\) is approaching 1 the environment is getting harsh and it is difficult for organisms to maintain sound and solid shells.

The figure shows the temporal variability of aragonite saturation state (\(\Omega\text{Ar}\)), which changes with temperature and biological production. In summer, the \(\Omega\text{Ar}\) values are at a maximum (between 2.85 and 3.05), when surface water is at the warmest and primary production is reasonable large. This means that the abundance of aragonite at the site is large during summer season and organisms build shells and skeletons as usual. In fall the temperature decreases, the mixed layer deepens, and \(\Omega\text{Ar}\) decreases towards winter concentrations. During wintertime, when the surface temperature is at a minimum, the \(\Omega\text{Ar}\) in surface water is also at its minimum of approximately 1.8, meaning that there is still sufficient amount of aragonite for organisms dependent on this substitute to survive, but the amount has decreased a lot since summertime. The current time series is too short to determine interannual trends; however, other studies in the northern North Atlantic have shown that the surface value of \(\Omega\text{Ar}\) is decreasing over years. Therefore it is of vital importance to continue the observations of the carbon cycle to determine the changes in the ocean acidification in the future. From other studies it is known that the transition zone between over saturated and under saturated water with respect to aragonite is found at depths between 1800 and 2000 m in the eastern part of northern North Atlantic. It is expected that this zone will shoal in the future, which will have implications for the carbonate dependent organisms living in that area.
EMSO-Azores is a fixed-point buoyed observatory with a multidisciplinary approach (from geophysics and physical oceanography to ecology and microbiology) that acquires time-series data at and around active hydrothermal vents at the Mid-Atlantic Ridge south of the Azores Islands. Fluid fluxes that feed these vents are controlled both by km-scale hydrothermal systems powered by magmatic heat, and by smaller-scale near-surface fluid circulations and mixing between seawater and hydrothermal fluids. Currents in the water column near the seafloor also affect these fluxes. The primary aim of the observatory is to provide data for research on the impact of changes in hydrothermal fluid fluxes, fluid chemistry, and water column processes on the microbial and faunal compartments of deep sea vents, at a range of spatial (km to microbial habitats) and temporal (seconds to several years) scales.

The current observatory setup (Figure 1) has been operated since 2010. It is composed of two seafloor nodes with connected instruments for sea monitoring (SeaMon), and of a transmission buoy that communicates acoustically with the seafloor stations and relays data (detection of seismic events, pressure at seafloor, video snapshots of hydrothermal fauna, turbidity, fluid temperature and chemistry, system status) via satellite every six hours to the EMSO data center hosted at Ifremer in Brest, France.

The FixO³ project supported the observatory by making data available online in the form of two Service Activities: SA 14-1: MoMAR biology, and SA 14-2: MoMAR-geophysics. These SAs are described in the FixO³ webpages (http://www.fixo3.eu/observatory/momar/). Data is available online in the EMSO-Azores site: http://www.emso-fr.org/EMSO-Azores (provisional address).

Ecological monitoring focuses on the Tour Eiffel vents (Figure 1), a ca. 15 m-high and up to 40 m-wide sulphide mound. Two sensor packages are currently connected there: a module with HD video camera (transmitting several snapshots), optode, dissolved iron analyser and turbidimeter, and a colonizer and low-temperature fluid sampler for microbiology (CISICS; Figure 1).

The geophysical component of the observatory is composed of a seismometer and two pressure gauges, installed within 200 m of the vents (Figure 1). It transmits a catalogue of detected seismic events, including information on their apparent local magnitude, as well as pressure and temperature data. HD video and seismometer data are stored locally and collected during the yearly maintenance cruises.

The observatory also comprises arrays of autonomous devices: ocean bottom seismometers, pressure probes, temperature probes set in venting chimneys, colonisation devices for both fauna and microfauna, and an oceanographic mooring (temperature, salinity, pressure and currents from seafloor to a depth of 900m). This is complemented by sampling of macro- and micro-organisms, rocks and fluids and by the acquisition of short time series on diffuse fluid properties, and CTD measurements in the water column during the yearly cruises devoted to maintenance of the observatory.
Opinion

Kate Moran
President and Chief Executive Officer, Ocean Networks Canada

1. What are in your opinion the main benefits of developing data products from ocean observatories (such as ONC’s State of the Ocean plots) and sharing them with the public?

It is important for all ocean observatories to invest in the development of data products that benefit a wide range of stakeholders for broader benefit. The reason for this imperative is because most observatories are funded with pubic money, hence multiple uses of these data should be part of normal operations. As an example, Ocean Networks Canada is developing a series of Smart Ocean Systems™ products that are produced by combining several types of observing data with models and/or algorithms. These products will provide benefits to the public by contributing to marine safety (e.g. realtime sea state alerts), environmental monitoring (e.g. ocean health reports in areas where there are multiple human stresses at the coast), and public safety (e.g. earthquake early warning). One could also consider educational products as part of these efforts by producing data sets that are readily used by teachers in classrooms and producing ebooks (e.g., see the Marine Life Guide at the iTunes store).

2. How can international collaboration between different initiatives such as FixO³ and ONC be instrumental towards data products development and sharing?

The approach for developing data products does not typically change when crossing borders, but the manner in which the product is delivered may need to be tailored to the ways in which different countries’ various stakeholders would use the product. For example, in some countries, it might be best to tailor the delivery of products solely over a cell phone platform. That said, the approaches and methodologies for producing these products represent most of the work and these can be readily shared. Of course the foundation of all of these products is high quality data from sensors that undergo regular calibration and are associated with robust metadata.

3. How do you see ocean data products evolving in the next 10 years?

That’s a great question. The data products I mentioned above are just the start. One can imagine, as climate change continues to throw surprises at us in terms of extreme events, data products that provide short-term forecasts and even alerts of impact events along many coasts will become critically important. Our tsunami data product will evolve to be tailored to local, densely coastal areas for storm surge alerts. Also, the marine shipping industry (which delivers over 90% of the world’s goods that are traded) will see continued pressure in two areas: upgrading their systems to be more like the airline industry with realtime ocean conditions delivered 24/7 for improved safety; and using ocean current, combined with weather data to plan and modify their routes in realtime to reduce fossil fuel emissions. In terms of education, Ocean Networks Canada is working to connect schools to the coastal ocean. As a start, we’ve installed community observatories in remote locations along Canada’s coast and are working with schools in these communities to connect with each other so that, e.g., students in the Arctic can share (in realtime) their changing ocean environment with students in a fiord or inland sea in northern British Columbia. Our vision is to see these classrooms begin to share these experiences with landlocked classrooms so that kids who have never experienced the sea can connect with the ocean through their peers.
New & updated resources to check out

FixO³ Network website - Updated

Everything you need to know about the project, the observatories, and the partners involved.

http://www.fixo3.eu

Earth Virtual Observatory (EarthVO) - Updated

Graphical visualization of all available data from FixO³ observatories. Free to access!

http://earthvo.fixo3.eu/

Handbook of best practices - New

This handbook describes best practices currently implemented to carry out operations at fixed-point observatories. Free to download!

FixO³ Service Activities - New

All data products from FixO³ observatories divided by topic. Free to access!

http://www.fixo3.eu/service-activities/

ESONET Yellow Pages - Updated

Tool for Interoperability and Standardization contains information concerning on-the-shelf products for the development and maintenance of deep sea observatories provided by the private sector.

http://www.esonetyellowpages.com/

YouTube video on ocean observatories and their applications - New

A 5-min video explaining what are ocean observatories and why they are important.

https://www.youtube.com/watch?v=EQF-Wz3cIWi

Wikipedia article on ocean observatories - New - Collaborators wanted!

A general introduction on ocean observatories, their components and uses. Open to the public to edit.

Can you contribute to this important knowledge resource?

https://en.wikipedia.org/wiki/Fixed-point_ocean_observatory
FixO³, a European tool to improve ocean observation capabilities, outputs and impact. FixO³ will provide access to open ocean observatories, data products and knowledge to feed science, inform policy and stimulate industry. Mid-way of a four year project, more than half of the planned deliverables have been achieved.

Data Harmonisation
- To harmonise data management standards and improve access to observatory data.
 - Key Achievements:
 - Data policy common to all FixO observatories
 - Standards & service registry accessible from the project website
 - Searchable metadata catalogue

Technological Harmonisation
- To harmonise observatory technology and processes in place.
 - Key Achievements:
 - Review of current operational status of network observatories
 - Handbook on best practices for observatory preparations, calibration, service and data transfer

Optimisation of Observing Capability
- To research a specification for an optimum observational network of FixO platforms, integrated and complemented by other platforms.
 - Key Achievements:
 - Evaluation of optimum Virtual Observing Networks
 - Inter-comparison studies addressing the adherence measuring and analytical techniques

Service Activities
- To provide access to data products and knowledge from 24 observatories.
 - Key Achievements:
 - Access to 50 Gb of on the four most widely addressed by the observatories

Transnational Access to Infrastructures
- To support national users by providing coordinated, free-of-charge, access to fixed open-ocean observatories.
 - Key Achievements:
 - Two calls for TNA launched with 24 applications from researchers from 30 different countries and 23 observatories to access a total of 25 out of 32 observatories

Research & Development
- To enhance the observatory capability for high quality observations and to develop a new platform design.
 - Key Achievements:
 - Laboratory and at sea testing of technology of the stand-alone platforms
 - Intercomparisons of pCO₂ sensors to evaluate performance
 - Evaluation of pH sensors

Industry
- To promote & strengthen interaction between the observatory research community and the commercial sector
 - Key Achievements:
 - Establishment of technology clusters to stimulate innovation & identification
 - Development of an Intellectual Property Rights (IPR) agreement
 - Identification of commercial sectors needs/requirements over the next 5-10 years

Policy
- To ensure long-term support to fixed-point observatories.
 - Key Achievements:
 - Cost-benefit analysis estimating the costs of observatories and highlighting benefits of European observatories
 - Units strengthened with European protocols on key issues (data sharing, IPRs, etc.)
 - Participation in European Commission's ESPR and European Commission's EChO

International Networking
- To enhance international and European collaboration.
 - Key Achievements:
 - Collaboration of links between European and non-European counterparts on FixO
 - Synchronisation and standardisation of database definitions, such as EOCET (EISO SAA)

Outreach & Training
- To engage, inform and train public, scientific and policy leaders.
 - Key Achievements:
 - High quality data visualisation tool for data from observatories (GEOViz)
 - High impact visual outputs for distribution to the public
 - Two-oversubscribed training workshops for early career scientists

What’s next?
- Complete status of European fixed observing sites
- Second TNA call information dissemination, as well as training courses and workshops information
- Updated library of instruments, techniques and guidelines
- Development of innovative products
- Recommendations for optimisation of ocean observing capacity

Integration | Harmonisation | Innovation

This work has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 3132463, [FixO³].

www.fixo3.eu